
PCL Services

Thor Design Panel 2/3

November 26, 1997

Version 2.2

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

ii

PCL Services Design Panel 2/3
Table of Contents

1. PREREQUISITE CONTROL LOGIC..1

1.1 PREREQUISITE CONTROL LOGIC INTRODUCTION ..1
1.1.1 Prerequisite Control Logic Overview ..1
1.1.2 Prerequisite Control Logic Operational Description ..2

1.2 PREREQUISITE CONTROL LOGIC SPECIFICATIONS...3
1.2.1 Prerequisite Control Logic Groundrules..3
1.2.2 Prerequisite Control Logic Functional Requirements ..3
1.2.3 Prerequisite Control Logic Performance Requirements ..5
1.2.4 Prerequisite Control Logic Interfaces Data Flow Diagrams ...5

1.3 PREREQUISITE CONTROL LOGIC DESIGN SPECIFICATIONS...6
1.3.1 Prerequisite Control Logic Detailed Data Flow ...6
1.3.2 Prerequisite Control Logic External Interfaces..7
1.3.3 Prerequisite Control Logic Test Plan ..8

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

1

1. Prerequisite Control Logic

1.1 Prerequisite Control Logic Introduction

1.1.1 Prerequisite Control Logic Overview
Prerequisite Control Logic (PCL) applications exist to prevent users from issuing commands when end
items are not properly configured. PCL protects against commands issued from any and all application
types, including the Command Processor, User Displays, End Item Managers, and Test Application
Scripts. PCL also provides a level of command safety that supports contingency or off-nominal situations
requiring manual command inputs at the FD level. PCL shall exist as a separate function that independent
of End Item Management. PCL provides additional safety margin above and beyond that provided by
other application software (i.e., End Item Management).

APP
Services

Command Management (CCWS)

End Item Manager

Command Management (CCP)
 Gateway Command/Response

Processing

Command and Control
Workstation (CCWS) Command and Control

Processor (CCP)
Gateway

PCL

DCN RTCN

Function Call

Interprocess Communication

Network

Key:

Interprocess Communication

concept4.vsd

Authentication

Authentication
Database

Authentication

Authentication
Database

User
Display

APP
Services

Command
Scripter

Command
Processor

User
Display
Services

End Item Manager
Services

Online Data
Bank

Online Data
Bank

Interprocess Communication

CVT
CVT

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

2

1.1.2 Prerequisite Control Logic Operational Description

PCL Services

Command
Management Gateway

Authentication

FDID+stimulus

numeric result

FD cmd

OLDB

PCL Ref. File

PCL
Sequences

PCL Seq.
Name

FD cmd +
PCL bit

numeric result

FD+PCL Sequences

Test Build

CVT Table

FD cmd

Appl. Serv.

Cmd Processor EIM User Displays Test Appl. Sripts

PCL APPLICATION

CCP

Application
Services

System
Message
Services

System
Message
Viewer

Failure Status
Messages

Meas.
info

Algorithm description

FD Details
PCL Viewer

User Display
Services

1 Set Up

The PCL sequences are user pre-defined C++ objects that test for the criteria for safe operation. The PCL
sequences and their initiating FDs are available to the test build process for inclusion in the TCID and the PCL
Reference File. The PCL reference file should contain only FDIDs and the names of the associated PCL sequences.
The Test Build process should fail if the PCL sequences cannot be found, do not have an associated initiating FD,
or fail to compile/link.

Each FD command that requires PCL execution would have its PCL bit set and the Override bit not set. The PCL
bit for every FD command can be looked up in the On Line Data Bank. The Override bit can be set from the
Command Processor or the Reactive Control Logic. The PCL and the Override bits are included in the C-to-C
packet header.

2 Initialization

Prior to Test Build, as each PCL sequence is written, an entry is made to the PCL association database which
contains the FD name, and the name of the PCL sequence object name with which it is associated.

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

3

PCL Application is a single process that contains the PCL Services and all PCL sequences. The PCL sequences are
linked into the PCL Application process as library objects. During Test Build, PCL Services is compiled and
linked with this library. A flat file with the data from the PCL association database, the PCL reference file, is also
passed to Ops CM for initialization.

During initialization, the constructor function for each sequence passes the name of each sequence and its object
pointer to PCL Services. PCL Services uses these passed parameters and the PCL reference file to create its own
association table which matches each FDID to its PCL sequence object pointer.

3 Operation

FD command is issued from either the Command Processor, User Displays, End item managers, or Test
Application Scripts to Command Management through Application Services. Command Management determines
from the information in the C-to-C packet header whether to send the command to PCL Application or out to the
Gateway.

When PCL Application receives an FD command, it executes the PCL sequence and returns a numeric value to
Command Management. This value, if zero, indicates that it is safe to issue the initiating FD stimulus value. Non
zero returned values may be used as “reason codes” that communicate to the initiating application the reason for
PCL failure. The “reason codes” are predefined in the PCL Application and are passed to Command Management.
The PCL application execution is performed on the CCP.

Limited Application Services calls are permitted inside a PCL sequence such as: sending out applicable PCL
failure messages, obtaining the initiating stimulus FD and its value, current measurement FD values, pseudo FD
values, and health information.

1.2 Prerequisite Control Logic Specifications

1.2.1 Prerequisite Control Logic Groundrules

• PCL applications are implemented as C++ objects.

• Test Build is responsible to build and integrate PCL Reference file into a TCID. Reporting PCL failure during
build is also the responsibility of Test Build.

• Application Software IPTs are responsible for defining and developing PCL sequences.

• PCL and Override bits are included in the header of the C-to-C packet.

• PCL Application is not able to issue any commands directly.

• Modification of a PCL sequence requires only a partial TCID rebuild and reload. However, the addition or
deletion of a PCL sequence affects Test Build process significantly.

• Calls to PCL Applications should return within an appropriate time (i.e. there should not be any infinite
loops).

• Command Management sends PCL failure messages to System Message Services.

• PCL Application sends service failure messages to System Message Services.

• PCL Application should run atomically.

• DBSAFE and Test Build will ensure that PCL does not get initiated for a pseudo FD.

1.2.2 Prerequisite Control Logic Functional Requirements

Prerequisite Control Logic SLS Requirements

(SLS 2.2.3.3.2) The CLCS shall provide the capability to protect from inadvertent issuance of commands.

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

4

1. Prerequisite logic

2. Two step protocol required on critical commands entered from the keyboard (e.g., arm,
execute, and disarm logic)

(SLS 2.2.5.5) Prerequisite Control Logic

To protect against inadvertently issuing a command which could injure personnel or damage equipment, CLCS
provides the capability for the user to predefine logic that verifies the appropriate conditions are met prior to
executing the command.

(SLS 2.2.5.5.1) RTPS shall provide the capability to verify that certain conditions are met before issuing any
FD command to an End-Item.

(SLS 2.2.5.5.2) The RTPS Prerequisite Control Logic function shall be fault tolerant.

(SLS 2.2.5.5.3) RTPS shall provide the capability to manually override Prerequisite Control Logic once
command issuance has been blocked.

(SLS 2.2.5.5.4) RTPS shall provide the capability for Reactive Sequence Test applications to bypass
Prerequisite Control Logic.

Prerequisite Control Logic Derived Requirements

1. PCL Application only executes the sequence identified for the initiating stimulus FD from the PCL Reference
file.

2. PCL Reference file is allowed to associate a sequence to more than one FD.

3. PCL Application returns a numeric value to Command Management such as,

− A zero indicates that it is safe to issue the initiating FD stimulus value.
− A non zero indicates a predefined reason code for the failure.

4. The association between a PCL sequence and its initiating FD(s) are in a data product accessible to Test Build.

5. The Command Processor can override PCL at runtime.

6. PCL sequences provide the pointers to the PCL sequence algorithm description string to System Viewer

through Application Services.

7. PCL application execution is performed on the CCP.

8. PCL is integrated into the CLCS System Integrity scheme. Any system or application processes required for

PCL operation is monitored for health, checkpointed, and restarted if necessary.

9. RTPS provides the capability to generate a runtime report that details all PCL related information for the

TCID. The contents of the report includes, but not be limited to: FD name and nomenclature, PCL required
flag, PCL application name, and dynamic PCL status (active/inhibited).

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

5

1 File Repository Management

1.1 The user defined logic for each PCL application will be maintained in a separate header and
implementation file.

1.2 The user source code for each PCL application will reside in the CM Repository.

1.2.3 Prerequisite Control Logic Performance Requirements
Prerequisite Control Logic performance requirements are not defined. The PCL Service shall process a
PCL request in a period of time that does not impact the requirements specified in section 3.2.3 of the
Command Support CSCI Requirements and Design Specification , 84K00550.

1.2.4 Prerequisite Control Logic Interfaces Data Flow Diagrams

 PCL
 Services

Appl. Services

Cmd Management
Send FD command

Return
numeric value

PCL Ref. File Get PCL seq. name

PCL Association
TableCreate table

Get measurement values
& health info

PCL
Sequence

Execute
sequence

Get numeric
 return value
Get pointer to algorithm description

Send algorithm desc. ptr. System Message
Services

Return seq. ptr.

Online Message
Catalog

Register Failed
Messages

Send trace
status msgUser Display

Sevices

• PCL Reference File provides the FDIDs and the names of their associated PCL sequences.

• Command Management passes the FD command and expects a numeric return value.

• Application Services provides interfaces for PCL Applications to get current measurement values and health
information.

• Online Message Catalog registers PCL failed status message.

• System Message Services and User Display Services provide interfaces for PCL Application to send failed
status messages and the pointer to the PCL algorithm description.

• PCL Services provides the following functions
− create PCL Association table.
− get FDID and stimulus from Command Management.
− get PCL sequence pointer from PCL Association table.
− execute PCL sequence and capture numeric return value.
− return numeric value to Command Management.
− send failed status message and pointer to algorithm description to System message Services.

• PCL Sequence is a set of user pre-defined logic that would return a numeric value to PCL Services. During
execution, PCL sequence can obtain current measurements, values, and health information.

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

6

1.3 Prerequisite Control Logic Design Specifications

PCL Application will perform and provide these following functions:

1. Create PCL association tables.
2. Receive FDID and stimulus for PCL sequence execution.
3. Execute PCL sequence and capture a numeric return value.
4. Pass the numeric return value to Command management.
5. Output reason codes when command is rejected

1.3.1 Prerequisite Control Logic Detailed Data Flow
This data flow provides a pictorial representation of the data flow between external sources and destinations and
the major and minor functions of the PCL Application.

Command
Management

PCL(FDID, stimulus)
class PCLSequence
{
public:
const char* name() const;
const char* AlgorDesc;
.
.
protected:
PCLSequence(const char* name, const char* AlgorDesc);
PCL(int FDID, double stimulus);
PCLalgorDesc();
virtual int PCLexcute(double stimulus);
.
private:
const char* name_;
const char* AlgorDesc_;
};

class PCLFDType:public PCLSequence
{
public:
PCLFDType(const char* name, const char* AlgorDesc);
int PCLexecute(double stimulus);
virtual int userExecute(typed stimulus)=0;
.
.
}

class MyFDType:public PCLFDType
{
public:
MyFDType(const char* name, const char* AlgorDesc);
int PCLuserExecute(typed stimulus);
.
.
};

PCLAppl.h’s

userPCL.h’s

return int

int sms_send_system_message(int PCL_Failure_Message_Number)

System Message
Services

PCLbaseObjectName.
 PCLalgorDesc().

User Display Services

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

7

Prerequisite Control Logic Object Diagram

Command
Management PCL Services PCL Sequences

PCL(int FDID, double stimulus):int
PCLalgorDesc():*PCLalgorDescPtr
PCLexcute(double stimulus):int

PCLuserExecute(typed stimulus):int

Prerequisite Control Logic Scenario Diagram

Any
Applications

FD(set,apply,issue)

Command
Management

PCL
Services

PCL
Sequences

Application
Services

CORBA call
PCLexecute()

int
CORBA return

API calls

API calls
(message
logging)

FD data

1.3.2 Prerequisite Control Logic External Interfaces

1.3.2.1 Prerequisite Control Logic Message Formats

The interface between Command Management and PCL Applications is a standard IDL-formatted message
compliant with OMG CORBA 2.0.

1.3.2.2 Prerequisite Control Logic Display Formats

PCL display will be done by System Message Viewer CSC.

1.3.2.3 Prerequisite Control Logic Input Formats

• PCL Reference File is in ASCII format and contains FDIDs and PCL Sequence Names in two separate
columns.

• Input from Command Management contains the FDID and a two to eight bytes long stimulus.

1.3.2.4 Recorded Data

Name of Recorded Data Recording Type SDC Local
PCL Association Failure System Message X
PCL Logic Execution Failure System Message X

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

8

1.3.2.5 Prerequisite Control Logic Printer Format

N/A

1.3.2.6 Interprocess Communications (C-to-C Communications)

CORBA calls will be utilized between Command Management and PCL. If CORBA requires excessive processing
overhead, then IPC calls will be implemented.

1.3.2.7 Prerequisite Control Logic External Interface Calls

• CORBA call from Command Management: PCLFDTypeObjectName.PCL(FDID, stimulus).

• System Message Services API call from PCL Application: int sms_send_system_message(int
PCL_Failure_Message_Number).

• User Display Services API call to PCL Application: PCLbaseObjectName.PCLalgorDesc(FDID).

1.3.2.8 Prerequisite Control Logic Table Formats

PCL Reference File format:

FDID1 PCLSeqName1<CR>
FDID2 PCLSeqName2<CR>

PCL Association table:

FDIDs PCL Sequence Names PCL Sequence Pointers
FDID PCLSeqName PCLSeqPtr
 “
 “
 “

 “
 “
 “

 “
 “
 “

1.3.2.9 Prerequisite Control Logic Startup Script

PCL Application requires both the PCL Reference File and PCL Sequences during initialization.

Command Management must be started and registration made to PCL interface’s CORBA ORB prior to starting
the PCL Application. Command Management must block any PCL-directed stimulus FDs until the PCL
Application is loaded and connected.

To start the PCL Application process, execute PCL with the single argument of the PCL Reference File. The PCL
Application object constructor will register it with the interface’s CORBA ORB, and instantiate the PCL sequence
objects.

1.3.3 Prerequisite Control Logic Test Plan
The specific test cases that will be run include:

1. Load and create the PCL association table.
2. For each FD type:

• Send an FD command that resulted in a true return after PCL sequence execution.
• Send an FD command that resulted in a false return after PCL sequence execution and verify that the

proper failure message is logged.
3. Send an FD command that resulted in PCL sequence is not found.
4. Verify through System Viewer that it displays the correct algorithm description.

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

9

PREREQUISITE CONTROL LOGIC ISSUES

• PCL failure messages are not defined at this point. These messages will be defined and registered with Online
Message Catalog.

• Strong typed checking at build time is yet to be finalized.

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

10

Appendix A
Below are examples of a FD type dm_gse_on_off header and C files for user codes:

gcl17.h

#ifndef __GCL17_H__
#define __GCL17_H__

#include "pcl_dm_gse_on_off.h"
#include "fd_types.h"

extern DM_GSE_ON_OFF GLOX1073E;
extern DM_GSE_ON_OFF GLOX0072E;

extern PD_ON_OFF NLOK3221X;
extern PD_ON_OFF NLOK3341X;
extern PD_ON_OFF NLOX1073E;
extern PD_ON_OFF NLOX0072E;

class GCL17 : public VPCL_DM_GSE_ON_OFF
{
public:
 GCL17(const char* name, const char* algorithmDescription);
 ~GCL17();
 int userExecute(ON_OFF initiatingStimulusValue);
};

#endif

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

11

gcl.C

#include "gcl17.h"

static const char* name = "GCL17";
static const char* algorithmDescription =
"THIS PROGRAM PREVENTS CLOSING THE TRANSFER LINE FILL\n\
 VALVE A86461 UNLESS THE EXPRESSION\n\
 ((A OR ((B OR C) AND D)) AND (((E OR F) AND (G OR H))\n\
 OR (I AND J AND K) OR L OR M) OR N) IS SATISFIED WHERE:\n\
\n\
 A. PUMPS A126 AND A127 OFF\n\
 B. A134 OPEN\n\
 C. A196 OPEN\n\
 D. A102 OPEN\n\
 E. A75120 CLOSED\n\
 F. A75121 CLOSED\n\
 G. A75127 CLOSED\n\
 H. A75128 CLOSED\n\
 I. PV9 OPEN\n\
 J. PV10 OPEN\n\
 K. PD1 OPEN\n\
 L. A86483 OPEN\n\
 M. A86483 OPEN\n\
 N. A86460 OPEN\n\
\n\
IT ALSO PREVENTS OPENING THE VALVE UNLESS THE EXPRESSION \n\
((A OR D OR (E AND F AND G)) AND H) OR(I AND J) IS SATISFIED \n\
WHERE:\n\
 A. PUMPS A126 AND A127 OFF\n\
 D. A86462 OPEN\n\
 E. PV9 OPEN\n\
 F. PV10 OPEN\n\
 G. PD1 OPEN\n\
 H. ET 100% LEVEL LESS THAN 10% WET\n\
 I. A134 OPEN\n\
 J. A102 OPEN";

GCL17::GCL17(const char* name, const char* algorithmDescription) :
 VPCL_DM_GSE_ON_OFF(name, algorithmDescription)
{
}

GCL17::~GCL17()
{
}

///
//
// NOTE: THE FOLLOWING EXAMPLE IS A STRAIGHT PORT OF PCL SEQUENCE
// GCL17. IT DOES NOT USE THE FACILITIES OF DATA HEALTH OR DATA FUSION
// TO SIMPLIFY THE LOGIC FLOW. IT IS ASSUMED THAT IN PRACTICE DATA HEALTH
// AND DATA FUSION WOULD BE USED TO REDUCE THE AMOUNT OF LOGIC THAT IS
// EXPRESSED IN TERMS OF FUNCTION DESIGNATORS.
//

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

12

///

int
GCL17::userExecute(ON_OFF initiatingStimulus)
{
 //
 //
 // BEGIN USER CODE
 //
 //

 result_t result = FAILURE;

 bool a = false;
 bool b = false;
 bool c = false;
 bool d = false;
 bool e = false;
 bool f = false;
 bool g = false;
 bool h = false;
 bool i = false;
 bool j = false;
 bool k = false;
 bool l = false;
 bool m = false;
 bool n = false;

 if (initiatingStimulus == ON)
 {
 // Perform valve close checks

 // A. A126 and A127 OFF

 if ((NLOK3221X.value() == OFF) && (NLOK3341X.value() == OFF))
a = true;

 else
a = false;

 // B. A134 OPEN

 if (((NLOX1073E.value() == ON) || (GLOX1073E.value() == ON)) &&
 ((NLOX0072E.value() == ON) || ((NLOX0072E.value() == OFF) &&

 (GLOX0072E.value() == OFF))))
b = true;

 else
b = false;

 // (other checks omitted for brevity)

 if ((a || ((b || c) && d)) && (((e || f) && (g || h)) ||
 (i && j && k) || l || m) || n)

result = SUCCESS;
 else

result = FAILURE;

PCL Services DP2/3 11/26/97 — 2:07 PM
Version 2.2

13

 }
 else
 {
 // Perform valve open checks

 // (other checks omitted for brevity)

 if (((a || d | (e && f && g)) && h) || (i && j))
result = SUCCESS;

 else
result = FAILURE;

 }

 return result;

 //
 //
 // END USER CODE
 //
 //
}

GCL17 gcl17(name, algorithmDescription);

